Warm-up: Normal Distribution PDF and CDF

PDF \(f(x)\): blue curve; blue shaded area = \(\Phi(x)\)
CDF \(\Phi(x)\): green curve; marker shows \(\Phi(x)\)
Tip: Click on either plot to set cursor \(x\). Range: \(x\in[\mu-4\sigma,\,\mu+4\sigma]\).
$$ f(x) = \frac{1}{\sqrt{2\pi}\,\sigma}\,\exp\!\Big( -\frac{(x-\mu)^2}{2\sigma^2} \Big),\qquad \Phi(x) = \int_{-\infty}^{x} f(t)\,\mathrm{d}t $$
Current: \(\mu\)=0.0, \(\sigma\)=1.0; \(x\)=0.0, \(\Phi(x)\)=0.5

Part 1: Gaussian Processes · Interactive Demo

Left-click to add points, right-click to remove nearest; supports prior sampling and regression posterior
Prior samples
Posterior mean
±2σ credible band
Observations
Default range x ∈ [-5, 5]; y-axis auto-adjusts to curves and bands.

Gaussian Processes: Formulas and Notes

For any finite input set, prior and regression posterior:

$$ f(\mathbf{X}) \sim \mathcal{N}\big(m(\mathbf{X}),\, K(\mathbf{X},\mathbf{X})\big) $$
$$ \begin{aligned} \mu(\mathbf{X}_*) &= K(\mathbf{X}_*,\mathbf{X})\,\big[K(\mathbf{X},\mathbf{X})+\sigma_n^2 I\big]^{-1}\,\mathbf{y}\\ \Sigma(\mathbf{X}_*) &= K(\mathbf{X}_*,\mathbf{X}_*) - K(\mathbf{X}_*,\mathbf{X})\,\big[K(\mathbf{X},\mathbf{X})+\sigma_n^2 I\big]^{-1}\,K(\mathbf{X},\mathbf{X}_*) \end{aligned} $$
Parameters \(\sigma_n\)=0.15

Common kernels (matrix elements \(K_{ij} = k(x_i, x_j)\):

Part 2: Probit Likelihood (Classification)

Probit maps latent real \(f\) to a binary class probability via the standard normal CDF \(\Phi(\cdot)\):

$$ p(y=1\mid f)=\Phi(f),\qquad p(y=0\mid f)=1-\Phi(f) $$

Equivalent form (recode labels as \(t=2y-1\in\{-1,+1\}\)):

$$ p(t\mid f)=\Phi(tf) $$

Key concepts:

$$ z = f + \varepsilon,\; \varepsilon\sim\mathcal{N}(0,1),\quad y=\mathbf{1}[z>0] \Rightarrow p(y=1\mid f)=\Phi(f) $$

Interactive Probit demo: place 0/1 labels, adjust kernel and hyperparameters, and see \(p(y=1\mid x)\) update in real time.

Probability curve \(p(y=1\mid x)\)
y=1 samples
y=0 samples
Threshold view: \(z=f+\varepsilon,\ \varepsilon\sim\mathcal{N}(0,1),\ y=\mathbf{1}[z>0]\Rightarrow p(y=1\mid f)=\Phi(f)\). Bernoulli view: \(y\mid f\sim\mathrm{Bernoulli}(\Phi(f))\).